942 resultados para Ghrelin, GHRL, growth hormone secretagogue receptor, GHSR, gene, non-coding RNA, ncRNA, natural antisense transcript, cis-NAT, alternative splicing, splice variant, GHRLOS, GHSR-OS, genome, orthologue, comparative genomics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat−/− mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat−/− mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat−/− mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat−/− mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat−/− mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case–control studies. We conducted searches of the literature published up to January 2013 in MEDLINE using the PubMed search engine. Individual data on 8,430 cases and 14,008 controls from six case–control studies of an all Caucasian population were evaluated for three ghrelin gene (GHRL; rs696217, rs4684677, rs2075356) and one ghrelin receptor (GHSR; rs572169) polymorphism in breast cancer, esophageal cancer, colorectal cancer and non-Hodgkins lymphoma. Results In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). Conclusions This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development. (Endocrinology 150: 2767-2774, 2009)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: A polymorphism of the GH receptor (GHR) gene resulting in genomic deletion of exon 3 (GHR-d3) has been associated with responsiveness to GH therapy. However, the data reported so far do vary according to the underlying condition, replacement dose, and duration of the treatment. OBJECTIVE, DESIGN: The aim of this study was to analyze the impact of the GHR genotypes in terms of the initial height velocity (HV) resulting from treatment and the impact upon adult height in patients suffering from severe isolated GH deficiency. CONTROLS, PATIENTS, SETTING: A total of 181 subjects (peak stimulated GH

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism underlying the generation of soluble growth hormone binding protein (GHBP) probably differs among species. In rats and mice, it involves an alternatively spliced mRNA, whereas in rabbits, it involves limited proteolysis of the membrane-bound growth hormone receptor (GHR). In humans, this latter mechanism is favored, as no transcript coding for a soluble GHR has been detected so far. To test this hypothesis, we analyzed COS-7 cells transiently expressing the full-length human (h) GHR and observed specific GH-binding activity in the cell supernatants. Concomitantly, an alternatively spliced form in the cytoplasmic domain of GHR, hGHR-tr, was isolated from several human tissues. hGHR-tr is identical in sequence to hGHR, except for a 26-bp deletion leading to a stop codon at position 280, thereby truncating 97.5% of the intracellular domain of the receptor protein. When compared with hGHR, hGHR-tr showed a significantly increased capacity to generate a soluble GHBP. Interestingly, this alternative transcript is also expressed in liver from rabbits, mice, and rats, suggesting that, in these four species, proteolysis of the corresponding truncated transmembrane GHR is a common mechanism leading to GHBP generation. These findings support the hypothesis that GHBP may at least partly result from alternative splicing of the region encoding the intracellular domain and that the absence of a cytoplasmic domain may be involved in increased release of GHBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A potent, orally active growth hormone (GH) secretagogue L-163,191 belonging to a recently synthesized structural class has been characterized. L-163,191 releases GH from rat pituitary cells in culture with EC50 = 1.3 +/- 0.09 nM and is mechanistically indistinguishable from the GH-releasing peptide GHRP-6 and the prototypical nonpeptide GH secretagogue L-692,429 but clearly distinguishable from the natural GH secretagogue, GH-releasing hormone. L-163,191 elevates GH in dogs after oral doses as low as 0.125 mg/kg and was shown to be specific in its release of GH without significant effect on plasma levels of aldosterone, luteinizing hormone, thyroxine, and prolactin after oral administration of 1 mg/kg. Only modest increases in cortisol were observed. Based on these properties, L-163,191 has been selected for clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH receptor (GHR) mediates metabolic and somatogenic actions of GH. Its extracellular domain (ECD; residues 1-246) has two subdomains, each with seven beta strands organized into two antiparallel beta sheets, connected by a short hinge region. Most of the ECD residues involved in GH binding reside in subdomain 1, whereas subdomain 2 harbors a dimerization interface between GHR dimers that alters conformation in response to GH. A regulated GHR metalloprotease cleavage site is in the membrane-proximal stem region of subdomain 2. We have identified a monoclonal anti-ECD antibody, anti-GHR(ext-mAb), which recognizes the rabbit and human GHRs by immunoprecipitation, but less so after GH treatment. By immunoblotting and immunoprecipitation, anti-GHR(ext-mAb) recognized a glutathione-S-transferase (GST) fusion incorporating subdomain 2, but not one including subdomain 1. In transient transfection experiments, anti-GHR(ext-mAb) failed to recognize by immunoprecipitation a previously characterized dimerization interface mutant GHR that is incompetent for signaling. In signaling experiments, brief pretreatment of GH-responsive human fibrosarcoma cells with anti-GHR(ext-mAb) dramatically inhibited GH-induced Janus kinase 2 and signal transducer and activator of transcription 5 tyrosine phosphorylation and prevented GH-induced GHR disulfide linkage (a reflection of GH-induced conformational changes). In contrast, anti-GHR(ext-mAb) only partially inhibited radiolabeled GH binding, suggesting its effects on signaling were not simply via inhibition of binding. Furthermore, anti-GHR(ext-mAb) prevented phorbol ester-stimulated GHR proteolysis, but GHR cleavage site mutants were normally recognized by the antibody, indicating that the stem region cleavage site is not a direct epitope. A Fab fragment of anti-GHR(ext-mAb) inhibited GH-induced GHR disulfide linkage and signaling, as well as phorbol ester-induced GHR proteolysis, in a fashion similar to the intact antibody. Thus, our findings suggest that anti-GHR(ext-mAb) has promise as a GH antagonist and as a tool in studies of conformational changes required for GHR activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)